//--------------------------------------------------------------------------------
//少ない知識ですが、恩返しと思いページを立ち上げています。
//加筆修正、大歓迎です。  markovchainmontecarlo(2015/09)
//--------------------------------------------------------------------------------

&color(red){&size(30){並列計算(snowfall)};};~
~
マルチコアが主流となってきているので、並列計算のパッケージである「snowfall」を紹介します。~
----
&color(red){&size(20){目次};};~
#contents
----
*対象者 [#jc285812]
計算速度を向上させたいが、煩わしいことはなるべく避けたい。~
そのような方にとって、並列計算パッケージ「snowfall」は一つの方法かもしれません。~
~
本記事は、以下の方を想定しています。~
-[[Rコード最適化のコツと実例集]]を読んで、ベクトル化等出来ることはは既に行っている。~
-apply family の使い方は分かっている。~
-モンテカルロシミュレーションなどの繰り返しを大量に行う必要がある。~

レベルとしては以下の方~
-Rの強みであるベクトル化は意識しなくても行っている。
-[apply family]は内部で[for]を用いているため、「適切に」forを使用した場合は、[apply family]よりも速度が速いことを知っている。
-[[Tierney 氏の R バイトコンパイラー]]も知っていて、必要な関数には適用できる。
-独立試行を大量に行わなくてはならないが、マルチコアでありながらCPU使用率が低いことにちょっと不満 <- &color(red){このレベル};

高速化の手段はいくつかありますので、適切な方法を用いてください。~
[[CRAN Task View: High-Performance and Parallel Computing with R:https://cran.r-project.org/web/views/HighPerformanceComputing.html]]
-C言語が得意な方 -> 「Rcpp」パッケージを利用すると爆速になります。(C言語を学ぶ必要があるため、「ちょっと試そうかな」という場合には向きません)
-CUDA対応のグラフィックボードを持っている。 -> gputools等を使用すると並列計算が速くなる可能性があります。


*とりあえず動かす [#jf6ffc48]
*各種関数 [#uf65f114]
*Tips [#uf0ea58a]
**本当に速くなりますか? [#bbda15a6]
並列化できる割合によって、理論上の性能向上の限界が変わってきます。([[アムダールの法則:https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%A0%E3%83%80%E3%83%BC%E3%83%AB%E3%81%AE%E6%B3%95%E5%89%87]]を参照)~
並列化できるタスクが90%ある場合性能向上の限界は10倍、半分しかない場合は2倍となります。~
ここで並列化できないタスクとは各workerとの通信などを指します。~
なお、&color(red){かえって遅くなる};場合もあります。~
**並列計算を中断した場合 [#zaa1454b]
並列計算を中断した場合は、必ずworkerを[sfStop()]で一度終了させてください。~
終了しないと、意図としない結果が返ってきます。~
 #普通に実行
 > sfSapply((1:200)/1000, function(x){Sys.sleep(x); x})
   [1] 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017
  [18] 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.030 0.031 0.032 0.033 0.034
  [35] 0.035 0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 0.050 0.051
  [52] 0.052 0.053 0.054 0.055 0.056 0.057 0.058 0.059 0.060 0.061 0.062 0.063 0.064 0.065 0.066 0.067 0.068
  [69] 0.069 0.070 0.071 0.072 0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.080 0.081 0.082 0.083 0.084 0.085
  [86] 0.086 0.087 0.088 0.089 0.090 0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.098 0.099 0.100 0.101 0.102
 [103] 0.103 0.104 0.105 0.106 0.107 0.108 0.109 0.110 0.111 0.112 0.113 0.114 0.115 0.116 0.117 0.118 0.119
 [120] 0.120 0.121 0.122 0.123 0.124 0.125 0.126 0.127 0.128 0.129 0.130 0.131 0.132 0.133 0.134 0.135 0.136
 [137] 0.137 0.138 0.139 0.140 0.141 0.142 0.143 0.144 0.145 0.146 0.147 0.148 0.149 0.150 0.151 0.152 0.153
 [154] 0.154 0.155 0.156 0.157 0.158 0.159 0.160 0.161 0.162 0.163 0.164 0.165 0.166 0.167 0.168 0.169 0.170
 [171] 0.171 0.172 0.173 0.174 0.175 0.176 0.177 0.178 0.179 0.180 0.181 0.182 0.183 0.184 0.185 0.186 0.187
 [188] 0.188 0.189 0.190 0.191 0.192 0.193 0.194 0.195 0.196 0.197 0.198 0.199 0.200
 
 #同じ作業を中断
 > sfSapply((1:200)/1000, function(x){Sys.sleep(x); x})
 
 #変数を変えて20個のみ実行したが、前の結果が残っている?
 > sfSapply((1:20)/100, function(x){Sys.sleep(x); x})
   [1] 0.010 0.020 0.030 0.026 0.027 0.028 0.029 0.030 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039
  [18] 0.040 0.041 0.042 0.043 0.044 0.045 0.046 0.047 0.048 0.049 0.050 0.051 0.052 0.053 0.054 0.055 0.056
  [35] 0.057 0.058 0.059 0.060 0.061 0.062 0.063 0.064 0.065 0.066 0.067 0.068 0.069 0.070 0.071 0.072 0.073
  [52] 0.074 0.075 0.076 0.077 0.078 0.079 0.080 0.081 0.082 0.083 0.084 0.085 0.086 0.087 0.088 0.089 0.090
  [69] 0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.098 0.099 0.100 0.101 0.102 0.103 0.104 0.105 0.106 0.107
  [86] 0.108 0.109 0.110 0.111 0.112 0.113 0.114 0.115 0.116 0.117 0.118 0.119 0.120 0.121 0.122 0.123 0.124
 [103] 0.125 0.126 0.127 0.128 0.129 0.130 0.131 0.132 0.133 0.134 0.135 0.136 0.137 0.138 0.139 0.140 0.141
 [120] 0.142 0.143 0.144 0.145 0.146 0.147 0.148 0.149 0.150 0.151 0.152 0.153 0.154 0.155 0.156 0.157 0.158
 [137] 0.159 0.160 0.161 0.162 0.163 0.164 0.165 0.166 0.167 0.168 0.169 0.170 0.171 0.172 0.173 0.174 0.175
 [154] 0.176 0.177 0.178 0.179 0.180 0.181 0.182 0.183 0.184 0.185 0.186 0.187 0.188 0.189 0.190 0.191 0.192
 [171] 0.193 0.194 0.195 0.196 0.197 0.198 0.199 0.200
 
 #残っているので再度実行して、うまくいっているように思われるが
 > sfSapply((1:20)/100, function(x){Sys.sleep(x); x})
  [1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
 
 #やっぱり返る結果は意図としない結果。
 > sfSapply((1:200)/1000, function(x){Sys.sleep(x); x})
  [1] 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017
 [18] 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.025 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120
 [35] 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200
 



*コメント[#lbb783b6]
- とりあえずページを立ち上げました。 -- [[markovchainmontecarlo]] &new{2015-09-26 (土) 09:14:04};
- 修正加筆、大歓迎です。 -- [[markovchainmontecarlo]] &new{2015-09-26 (土) 09:41:45};

#comment
----
*参考文献・文書など [#mae70577]
-CRAN~
[[CRAN Task View: High-Performance and Parallel Computing with R:https://cran.r-project.org/web/views/HighPerformanceComputing.html]]~
-Web Page~
[[Easier Parallel Computing in R with snowfall and sfCluster:http://journal.r-project.org/archive/2009-1/RJournal_2009-1_Knaus+et+al.pdf]]~
-その他(直接snowfallに関係ないが参考になると思います。)~
[[Rで並列計算]]~
[[Tierney 氏の R バイトコンパイラー]]~
[[Rコード最適化のコツと実例集]]~
[[Rの関数定義の基本]]~

[[【R言語】ループ処理回避 (and/or) 並列化処理 組み合わせで、計算高速化 手法まとめ:http://qiita.com/HirofumiYashima/items/18d5aa87578115215230]]~
[[Rのちょっと速いコードの書き方:http://www.anlyznews.com/2012/02/r_11.html]]~
[[R の apply 徹底解説:http://d.hatena.ne.jp/a_bicky/20120425/1335312593]]~

トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Google
WWW を検索 OKADAJP.ORG を検索